31 { |
Time-varying explanatory variables

Cox’s method provides a convenient way of controlling for time in the
analysis of follow-up studies. In its simple form the method assumes that
other explanatory variables do not change with time. In this chapter we
show how the method can be extended to allow for this. We also discuss the
closely related problem of analysis strategies when rates vary in relation
to more than one time scale, and draw attention to some dangers and
difficulties.

31.1 The model and the likelihood

We have seen that Cox’s method amounts to dividing the multiplicative
model for rates into two parts:

Rate = CornerxTime]x]AxBx--- .

The first part refers to the baseline rates while the second part specifies
how the rate ratio

6. — Rate for subject ¢ at time ¢
" Baseline rate at time ¢

is related to the explanatory variables A, B, etc.. On a log scale

log(Rate) = | Corner + Time | + | A+B+ J .

In the simple form of the method 8; is assumed to be independent of time.

The extension of Cox’s method with which we are now concerned allows
the relationship between 6; and the explanatory variables to vary with time.
This would be necessary, for example, when studying levels of hazardous
industrial exposures in occupational studies and when studying changing
treatments in long term follow-up studies of chronic disease aetiology. In-
deed most explanatory variables of interest to epidemiologists vary with
time if follow-up is over a sufficiently long period.

Allowing the rate ratio part of the model to change over time involves
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only a simple change to the contribution

log (9(for case) Z 0) )

Risk set

from each risk set to the partial log likelihood. Since the model now predicts
different values of @ at different times the contribution of each risk set must
now be calculated using the values of @ current at the time of occurrence
of the failure.

COMPUTATION

When it comes to computing the likelihood and finding the values of pa-
rameters which maximize it this simple change turns out to have major
consequences, and computation times can increase by several orders of
magnitude. To understand why the computation is so heavy it helps to
look at the simpler version of Cox’s method to see why this does not in-
volve hedvy computations. There are two reasons. First, for any particular
set of values for the parameters, the value of 8 only needs to be worked
out once for each subject. Second, the value of 3~ 6 does not have to be
calculated from scratch for each risk set because the equivalent term from
the previous risk set can be updated by subtracting the values of ¢ for all
subjects lost to follow-up in the intervening period and adding the con-
tributions of those newly joining the cohort. Other terms needed in the
computation of gradient and curvature of the log likelihood can be updated
in a similar way.

When the model allows the rate ratios 8 to change over time a subject
who appears in several risk sets can have different values of 8 in each. This
means that not only must the values of 6 be re-calculated for each risk set

but 3" @ and other gradient and curvature terms must be calculated from

scratch. The result is that the computing time rises dramatically.

Some reduction in computing time can be achieved by sampling the risk
sets. The algebraic equivalence of the partial likelihood in Cox’s method
and the conditional likelihood for matched case-control studies means that
analyzing a cohort study using Cox’s method is the same as analyzing it
as a case-control study in which each incident case is individually matched
with a control set in which the controls are all other subjects under study
at the moment of incidence. Since a case-control study which draws many
controls for each case provides very little more information than one which
draws only a few, we shall lose little by taking a random sample of controls
drawn from each risk set rather than using the entire risk set. Sampling
risk sets in this way creates what is called a nested case-control study. Such
studies offer a number of practical advantages in addition to considerable
computational savings and will be discussed further in Chapter 33.
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Fig. 81.1. Changing exposure group.

31.2 Changing exposure group

One simple but important way in which an explanatory variable can change
with time arises when a subject can change from being unexposed to being
exposed group (or vice versa) during the course of follow-up (see Fig. 3_1.1).
This is most easily dealt with by splitting the follow-up for such subjects
into an unexposed part and an exposed part, and treating the parts as
distinct subjects. The data can then be analysed using the simple form of
Cox’s method in which the explanatory variables do not change with time.
The validity of the analysis depends on a relatively strong assumption con-
cerning the reasons for the change of exposure group, namely that transfer
is unrelated to the subsequent probability of failure. If the transfer mech-
anism operates in a way that selects particularly high or low risk subjects
then subsequent comparisons will be distorted. This is another example of
selection bias. More formally, it is required that transfer must be indepen-
dent of subsequent failure conditional upon the values of all other variables
in the model. If transfer and failure are both strongly related to age (say)
there will be an overall association between transfer time and outcome, but
this will not bias estimates of other effects providing there is no relationship
between transfer time and outcome for subjects of the same age, and pro-
viding the model takes proper account of the relationship between age and
failure rate. Similar considerations apply when there are more than two
categories of exposure or when the level of exposure varies continuously.

Exercise 31.1. Subjects enter a heart transplant programme as unexposed
on joining a waiting list for a transplant, and switch to the exposed group on
receiving the tramsplant. Do you think the assumptions discussed above are

likely to be met in this case?

31.3 Time scales as explanatory variables

Another very common form of time-dependent explanatory variable is. an
additional time scale. For example, in a clinical study in which survival
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Fig. 31.2. Follow-up by age and time.

is analysed largely in relation to time since diagnosis, it will usually be
necessary to control the comparison of different treatments for the age of
the subjects receiving them. For short studies this can be achieved by
including age at. diagnosis, which is fixed for every subject. When follow-
up is over many years it is better to include age itself, which varies with
time. Fig. 31.2 illustrates follow-up of a subject in which observation time
is classified by time since diagnosis and age. The risk sets are determined
by the times of occurrence of failures. Two such times are illustrated in
the figure by narrow vertical bands. One corresponds to the risk set for
the failure of the subject shown while the other is an earlier failure. The
subject shown contributes to both risk sets, but is of a different age on the
two occasions.

One possible analysis would be to include time since diagnosis in the first
part of the model, so that this is the time scale which is used to determine
the risk sets, and to include age as a time varying explanatory variable in
the second part of the model. This could be done either by dividing the
age scale into 5- or 10-year bands and treating it as a categorical variable,

as in
log(Rate) = | Corner + Time |+ LAge +A+B+-.- | ,

or by treating age as a quantitative and fitting linear effects, and possibly
quadratic effects too, as in

log(Rate) = | Corner + Time +I [Age] + [Age-sq] + A+B+--- ‘ .
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When the partial log likelihood is formed for either of these analyses each
risk set contributes a term of the form log(6/ > 8) where the values of 8
for the subjects in the risk set are determined by the relationship between
log(8) and the parameters in the ‘second part of the model. As an example
of this computational process consider the model

log(Rate) = Corner + Time |+ Age+A+B

where age has five levels, A has two levels and B has three levels. The
parameters in the second part of the model are then Age(1), ---, Age(4),
A(1), B(1) and B(2). Now consider a subject, at level 1 for A and level 2
for B, who appears as a survivor in the risk sets at two failure times, and
suppose that this subject is in age band 3 at the time of the first failure,
and in age band 4 at the time of the second failure.

Exercise 31.2. Write down an expression, in terms of the parameters, for the
values of log(6) for this subject, in the two risk sets.

When there are two time scales a natural question to be considered is
which should be included in the baseline rates part of the model and which
should be included in the rate ratio part. The choice depends on the way
that rates vary along each time scale. If this variation is to be modelled in
the rate ratio part of the model then we must either divide the scale into
broad bands or fit simple mathematical functions of time, such as linear or
quadratic. The former strategy is adequate if the variation of rates is not
too rapid, while the latter is only possible if the variation is regular enough
to describe by simple mathematical functions. If variation is both rapid
and irregular neither approach works very well and the variation should be
modelled in the baseline rates. Thus if it is suspected that variation along
one scale will be rapid and irregular this should be the scale whose effects
are modelled by the baseline rates, and other scales should be treated as
time varying explanatory variables. If variation is smooth along all scales
it is better to use. the scale with the strongest effects for the baseline rates.

Exercise 31.3. Discuss appropriate strategies for modelling the effects of age
and calendar time on incidence of (a) a chronic degenerative disease, and (b) an
infectious disease.

31.4 Dependencies between time scales

Different time scales are not truly different variables but the same variable
measured from different origins. It is therefore impossible for a subject
to advance one year on one scale without simultaneously advancing one
year on other time scales. For example, we cannot pass through a year
of calendar time without advancing a year in age — would that we could!
This dependency between time scales can lead to difficulties when trying
to interpret the estimated effects of changes on these time scales.
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As an illustration we shall return to the example of age and time since
diagnosis in a clinical follow-up study. Let us first consider the model

log(Rate) = | Corner + Time +’ [Age-at-diagnosis] + - - - | ,

in which the effect of time since diagnosis is the main time scale and is
included in the first part of the model, while age at diagnosis is included
as a linear effect in the second. The parameter [Age-at diagnosis] measures
the change in the log rate per one year change in age, holding time since
diagnosis constant at any arbitrary value. Fig. 31.3 shows two subjects who
are diagnosed at ages 47 and 61 respectively; if we assume these subjects
have the same values for any other explanatory variables the difference in
log rate predicted by the model, at diagnosis, or at any value of time since
diagnosis, is

(61 — 47) x [Age-at-diagnosis] = 14 x [Age-at-diagnosis).

Now consider the model

log(Rate) ={ Corner + Time |+ | [Age] + - - -

in which age varies with time. The two subjects in Fig. 31.3 have a 14
year age difference at diagnosis, so this model predicts a difference in log
rates between the two subjects of 14 x [Age] at diagnosis. Because these
two subjects have a 14 year age difference not only at diagnosis but at any
time after diagnosis, the model also predicts a difference of 14 x [Age| at
any value of time since diagnosis. Thus both models predict a constant
difference in log rate at any value of time since diagnosis. In the one
case the prediction is 14 x [Age-at-diagnosis], in the other the prediction is
14 x [Age]. This is true for any pair of subjects; the models make identical
predictions and cannot be differentiated, the [Age-at-diagnosis] parameter
in the first model is making the same comparison as the [Age] parameter
in the second.

There may well be scientific interest in discriminating between models
in which the age at diagnosis determines prognosis, and models in which
age itself is the determinant, but if we were to fit the model

log(Rate) = | Corner + Time +“Age] + [Age-at-diagnosis] + - - - ’ ,

in order to try and separate the linear effect of age controlled for time since
diagnosis from the linear effect of age at diagnosis controlled for time since
diagnosis, we would run into difficulties. When time since diagnosis and
age are held constant, there can be no further variation in age at diagnosis
so that the [Age-at-diagnosis] parameter cannot be estimated. Likewise,
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Fig. 31.3. Observation of two subjects.

time since diagnosis and age at diagnosis uniquely determine age so that
the [Age] parameter cannot be estimated. Again the two subjects shown in
Fig. 31.3 demonstrate the problem. The new model also predicts that the
difference in log rates remains constant at any value of time since diagnosis
but this difference is now equal to

14 x [Age] + 14 x [Age-at-diagnosis] = 14 x ([Age] + [Age-at-diagnosis]),

where the parameters [Age] and [Age-at-diagnosis] now refer to the new
model which contains both linear effects. Because any values for the two
parameters which have the same sum, make the same predictions, the
parametérs-cannot be estimated individually. They are said to be non-
identifiable or aliased.

A computer program will usually warn the user when two parameters
are non-identifiable and then omit one of them from the model. This is
quite useful when the object is to control for age and age at diagnosis, but
if the object is to disentangle their effects, what the computer program is
saying is that we are attempting the impossible.

The non-identifiability of parameters for different time scales refers to

--their linear effects. When we come to fit models with non-linear terms,

things are not so bad. Consider for example the predictions of the model

log(Rate) = | Corner + Time +| [Age] + [Age-sq] + - - l
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for the two subjects shown in Fig. 31.3. At the time of diagnosis the model
predicts a difference in log rates of

(61 — 47) x [Age] + (61% — 47%) x [Age-sq] = 14 x [Age] + 1512 x [Age-sq].

However, 5 years after diagnosis, their ages are 66 and 52 and the model
predicts a difference in log rates of

(66 — 52) x [Age] + (662 — 52%) x [Age-sq] = 14 x [Age] + 1652 x [Age-sq].

In the model with non-linear effects, therefore, the difference between log
rates for the two subjects does vary with time since diagnosis. The model

log(Rate) +

[ [Age-at-diagnosis] + [Age-at-diagnosis-sq] + - - - |

predicts a difference in log rates of
(61 — 47) x [Age-at-diagnosis] + (612 — 47%) x [Age-at-diagnosis-sq]

throughout the follow-up, and this is a different prediction than the one
obtained from the model with age and age-squared. The linear parts of the
two predictions are still the same and cannot be separately estimated, but
the non-linear parts are different and can be.

Similarly, if we were to fit the model

log(Rate) = +

[Age] + [Age-sq] + [Age-at-diagnosis]+
[Age-at-diagnosis-sq] + - - - )

the parameters [Age] and [Age-at-diagnosis| are not identifiable while the
parameters [Age-sq] and [Age-at-diagnosis-sq] can be estimated. The same
is true for any other non-linear component of the relationships.

31.5 Discrete time bands

In the above discussion the time variables are measured exactly; when the
time scales are divided into discrete bands the position is slightly more com-
plicated. To illustrate this we shall return to the two subjects of Fig. 31.3
and imagine a model in which age has been grouped into 5-year bands but
time since diagnosis is still measured exactly. At the beginning of follow-
up one subject is in the 45-49 band and the other is in the 60-64 band.
However, after three years the former subject has moved into the 50-54
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band while the latter remains in the 60-64 band. It will appear to a com-
puter program that the age difference between the subjects has narrowed!
As a result the program will not spot the underlying non-identifiability of
models such as

log(Rate) = rCorner + Time | + lﬁge + Age-diag + - J

and fit them without complaint. However, the linear components of the
relationships with age and age at diagnosis have only become estimable
because of the inaccuracy introduced by banding and the resulting param-
eter estimates are uninterpretable.

31.6 Modelling vital rates

A familiar-exgmple of these problems arises in ‘age-period-cohort’ mod-
elling of mor‘gzty and other vital rates, where the aim is to disentangle
the dependence of rates upon age, calendar time (period), and date of
birth (birth cohort). This comparison raises exactly the same problem as
above and has provoked a lot of discussion in the epidemiological litera-
ture. Much of this has been based on the misconception that the problem
is a shortcoming of current statistical methods and that its solution awaits
only methodological advances. This is not the case. The difficulty is in-
escapable and arises from the fact that subjects cannot move in one time
scale without an identical move in others.

Fig. 31.4 shows a table in which both both age and calendar period have
been divided into 10-year bands. Tables of rates, classified in this way, are
frequently available from official published sources, and allow effects of year
of birth (birth cohort effects) to be estimated approximately. If we remem-
ber that observation of individual subjects is represented by diagonal lines
in the age and calendar time Lexis diagram (illustrated by the arrow), it
is clear that diagonal groupings of cells in the table correspond approzi-
mately to birth cohorts. The cell labelled 0 refers to subjects born around
1870, those labelled 1 to subjects born around 1880, and so on. Although
this correspondence is only approximate, the new discrete codings for age
period and cohort behave very much like the underlying continuous scales.
In particular, they are linearly dependent. In our example,

Cohort = 3 + Period — Age.

This means that when two are fixed the third is also fixed and in models

* such as

log(Rate) = Corner + [Age] + [Period] + [Cohort]

the parameters are unidentifiable, and it is impossible to disentangle the
linear effects of all three variables.
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Period
1945-54 1955-64 1965-74 1975-84
Age (Band) (0) (1) (2) (3
75-84 (3) 0 o1 2 3
65-74 (2) 1 2 3 4
5564 (1) 2 3 4 5
45-54 (0) 3 4 5 6

Fig. 31.4. Approximate birth cohorts.

Some investigators have returned to the raw data in order to allo-
cate subjects to their true birth cohort. This avoids the approximation
in Fig. 31.4 but leads to a serious fallacy. Fig. 31.5 shows how the exact
birth cohorts move across the Lexis diagram. The cell labelled 0 refers to
the 1860-69 birth cohort, those labelled 1 to the 187079 cohort, and so
on. The discrete codings no longer behave like the underlying scales. For
example, birth cohort 1 is observed in 3 cells; the transition from the first
to the second involves a change of age band ( from 65-74 to 75-84) without
change in calendar period, while the transition from second to third corre-
sponds to a move through calendar time without change in age! Looked at
naively it would appear that, by grouping, we have created a natural exper-
iment in which subjects can age instantaneously and travel in time without
ageing. The fallacy lies in the fact that the regions are triangular and that
regions shaped 74 disproportionately represent ages towards the upper end
of the 10-year band and dates towards the lower end of the period, while
regions shaped / disproportionately represent ages at the lower end of the
band and periods at the upper end. Unfortunately, computer programs
have no way of knowing this. They will believe that a miraculous natural
experiment has been observed, and estimate separate linear effects for all
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Period
1945-54 1955-64 1965-74 1975-84
Age (Band) (0) (1) (2) (3)
0 1 2
75-84 (3)
1 2
1 2
65-74 (2)
2
2
55-64 (1)
6
6
45-54 (0)
6 7

Fig. 31.5. Exact birth cohorts.

three scales without complaint. This uncritical behaviour of computer pro-
grams (which can’t know better) has been hailed by some epidemiologists
and statisticians (who should) as a ‘solution’ to the identifiability ‘prob-
lem’. The reverse is the case; the computer solution is fallacious, being
based entirely on grouping inaccuracies, and the resultant estimates are
uninterpretable. It is worth pointing out that this pitfall is not confined
to the age-period-cohort problem, but can be encountered whenever more
than one time scale is involved in an analysis. ’

Solutions to the exercises

31.1 When a heart becomes available for transplantation and there is
more than one patient eligible to receive it, there is potential selection bias.
A controlled study would randomize such choices to exclude selection bias,
but in an observational study it will always be difficult to know whether

.. the recipient was selected because the clinician felt that this patient was

most likely to benefit. Such selection would cause serious bias in a simple
analysis. In theory this can be offset by including in the analysis any
prognostic factors likely to have been used by the clinician making the
decision, but in practice one can rarely be sure that all relevant factors
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have been taken into account. We shall discuss this example in more detail
in Chapter 32.

31.2 For the first risk set
log(#) = Age(3) + A(1) + B(2).
For the second risk set
 log(6) = Age(4) + A(1) + B(2).

31.3 Incidence rates of chronic degenerative diseases such as ischaemic
heart disease and most cancers rise steeply with age. In such diseases age
may usually be thought of as a surrogate for the cumulative damage in-
flicted by a large number of influences throughout life. Such cumulative
damage will be reflected in a smooth increase of rates with age so that
simple linear or quadratic models for the age effect are usually satisfactory.
Grouping age by 5 or 10 year bands will also work quite well. Age rela-
tionships for incidence of infectious diseases are usually more complicated.
Increasing immunity with age will produce a smoothly decreasing curve,
but where transmission of the infectious agent depends upon various social
influences such as schooling, employment, sexual activity etc., these may
give rise to rather irregular age curves. Simple mathematical functions for
age-incidence curves are therefore less likely to be useful. Grouping may
also be difficult because of abrupt changes in incidence due to age related
changes in social behaviour.
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